
Data-Driven Requirements Engineering – An
Update

Walid Maalej
University of Hamburg

maalej@informatik.uni-hamburg.de

Maleknaz Nayebi
Ecole Polytechnique Montreal

mnayebi@polymtl.ca

Guenther Ruhe
University of Calgary

ruhe@ucalgary.ca

Abstract—Nowadays, users can easily submit feedback about
software products in app stores, social media, or user groups.
Moreover, software vendors are collecting massive amounts of
implicit feedback in the form of usage data, error logs, and
sensor data. These trends suggest a shift toward data-driven
user-centered identification, prioritization, and management of
software requirements. Developers should be able to adopt
the requirements of masses of users when deciding what to
develop and when to release. They could systematically use
explicit and implicit user data in an aggregated form to support
requirements decisions. In this talk we will present and discuss
most recent achievements in this direction since the paper’s
original publication. We will also show to mine data sets mobile
apps, give a few success/failure stories and a few practical advises.

Index Terms—Requirements engineering, Data analytics, Min-
ing software repositories, Stakeholders, Feature extraction

I. MOTIVATION AND CONTEXT

Requirements engineering identifies, documents, negoti-
ates, and manages the desired properties and constraints of
software-intensive systems, the goals to be achieved in a soft-
ware project, and the assumptions about the environment [7].
We can consider requirements as a verbalization of decision
alternatives regarding the functionality and quality of a system
[1]. A large part of requirements engineering is concerned with
involving system users, capturing their needs, and getting their
feedback.

Since its original publication [7], an increasing number
of studies showed that the predicted direction is relevant.
In the European Horizon2020 project Q-Rapid [4], a data-
driven, quality-aware rapid software development framework
was developed in which quality and functional requirements
are managed in conjunction. As another example, social media
support for deciding on new or updated features is studied [10].
It was shown that app store mining is an important source of
information, but should be complemented by other sources
such as tweets to provide the best and most up-to-date input
for decision-making.

The notion of platform-mediated software engineering on
two sided-markets (as in mobile apps stores) closed the
feedback loop to users and added transparency to the market
status of software products. As of today, the “market” has
significant impact on the release decisions. Release engineers
are concerned with the factors to evaluate success in these two-
sided markets [11]. A survey with release engineers showed

that 90% believed that customer feedback has the highest
importance for evaluating success and failure of mobile apps
[11]. This imposes the importance of understanding user
requirements trough the public feedback loops and in a more
systematic way.

In the original article as well as in this talk, we discuss
how software developers, managers, and analysts can use this
data to identify, prioritize, and manage the requirements for
their software products. We see three major future directions
in practice.

First, tools for feedback analytics will help deal with a large
number of heterogeneous and unstructured user comments
by classifying, filtering, and summarizing them.

Second, automatically collected usage data, logs, and inter-
action traces could improve the feedback quality and assist
developers with understanding the feedback and reacting to
it. We call this automatically collected information about the
software usage implicit feedback.

Third, with all the explicit and implicit feedback now avail-
able in an (almost) continuous way, the following ques-
tion arises: How can practitioners use this information and
integrate it into their processes and tools to decide about
what should be done, e.g. when the next release should be
offered or what requirements and features should be added
or eliminated [7].

II. HIGHLIGHTS OF THE TALK

The rapid growth of app stores and repositories has led
to an increasing number of publications in app store anal-
ysis through data mining. A big portion of these studies is
concerned with analyzing and prioritizing user requirements
and planning for app releases [8]. Having synthesized these
studies, our experience with industry, and lessons learned in
the working tutorial1, this talk will cover the following topics:

Identifying and classifying stakeholders: Analytics can
help to identify and classify various user groups, stakehold-
ers, or personas with different characteristics and needs. For
instance, deviant users and exceptional use cases can be of
interest to requirements analysts and developers. Classifying
stakeholders might also help analysts to identify, understand,
and specify non-functional requirements more concretely, such
as accessibility (by identifying how people with disabilities

1https://sites.google.com/view/mining2planning/home



use the software), privacy (by identifying acceptable trade-
offs for stakeholders), or performance (by identifying which
performance requirements apply for which user groups) [6].

Classifying and summarizing user feedback: User feed-
back includes a variety of information as shown by Pagano and
Maalej [13]. Automatically classifying feedback can give an
overall idea about an apps usage and types of user engagement
(i.e. how many bug reports, feature requests, etc.). This could
be used for comparing the releases over time (in terms of sen-
timents, requested requirements, reported bugs) and with other
apps [5]. Researchers also suggested probabilistic approaches
to summarize informative review content [3].

Implicit feedback analysis: Research has shown that devel-
opers and analysts can hardly use user feedback, in particular
negative feedback, since it lacks context [2], [13]. To improve
the understanding of the circumstances under which users sub-
mit their feedback, usage data and the interaction history can
be very useful. Similar to explicit feedback, usage data need
to be analyzed, filtered, summarized, and visualized to add
value for developers and analysts. Implicit usage data might
include the individual clicks of the users and the interactions
with the user interface. We elaborate on techniques that can
be used in practice to support the decisions of developers and
requirements analysts.

Designing super apps by looking beyond the fence:
Functionality of software products often does not match user
needs and expectations. The closed set-up of systems and
information is replaced by wide access to data of users and
competitor products. This shift offers completely new oppor-
tunities to approach requirements elicitation and subsequent
planning of software functionality. Having wide accessibility
to the information of similar apps in conjunction with their
user reviews and ratings can be a great source to identify the
user requirements for a new app and later to compose new
market-driven apps [12].

The changing process of RE Decision-making: Require-
ments engineering eamins a centric process, but the decisions
to be made and the process how they are made have changed
and will further change. Overall, we project a transition
from single person and intuition based decision-making to a
group-based process with decisions that are based on real-
time analysis of a broad range of information sources. These
changes relate to (i) how decisions are made and based on
which information, (ii) who is making them, (iii) what is
decided about, (iv) when to make them. There is no ”one
size fits all solution” that should be expected, but a trend
to openness op the whole process, which is aligned with the
general trend to open innovation in software engineering [9].

III. PRESENTERS

WALID MAALEJ is a professor of informatics at the
University of Hamburg, chair for Applied Software Technol-
ogy, and a member of the tech-transfer institute HITeC. His
research interests include data-driven software engineering,

context-aware adaptive systems, e-participation and crowd-
sourcing, and software engineering’s impact on society. Maalej
received a PhD from the Technical University of Munich. He
served as Program Chair of RE’18 and Industry Co-Chair for
RE’17 and RE’10. Currently he is leading a 5MEUR project
on Requirements Engineering and Data Science.

MALEKNAZ NAYEBI is holding an excellence research
chair as an assistant professor at the University of Mon-
treal. Maleknaz was a Postdoctoral fellow at the University
of Toronto. She got her PhD at the Software Engineering
Decision Support lab from The University of Calgary. The
PhD was on Analytical Release Management for Mobile
Apps. She has six years of professional software engineering
experience. Her main research interests are in mining soft-
ware repositories, release engineering, open innovation and
empirical software engineering. Maleknaz co-chaired RE data
track 2018, IWSPM 2018, IASESE 2018 advanced school, and
OISE 2015.

GUENTHER RUHE is the Industrial Research Chair in
Software Engineering at the University of Calgary. His re-
search focuses on product release planning, software project
management, decision support, data analytics, empirical soft-
ware engineering, and search-based software engineering.
Ruhe has a proven track record of working with industry
and transfer technologies to practice. Hes the editor in chief
of Information and Software Technology and was the General
Chair of the Requirements Engineering conference RE’18. Hes
a senior member of IEEE and a member of ACM.

REFERENCES

[1] A. Aurum and C. Wohlin. The fundamental nature of requirements
engineering activities as a decision-making process. Information and
Software Technology, 45(14), 2003.

[2] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R. Premraj, and T. Zim-
mermann. What makes a good bug report? In Proc. FSE, pages 308–318.
ACM, 2008.

[3] E. Guzman and W. Maalej. How do users like this feature? a fine grained
sentiment analysis of app reviews. In Proc. RE. IEEE, 2014.

[4] L. Guzmán, M. Oriol, P. Rodrı́guez, X. Franch, A. Jedlitschka,
and M. Oivo. How can quality awareness support rapid software
development?–a research preview. In Proc. REFSQ, pages 167–173.
Springer, 2017.

[5] T. Johann, C. Stanik, B. M. A. AlirezaM.Alizadeh, and W. Maalej. Safe:
A simple approach for feature extraction from app descriptions and app
reviews. Proc. RE, pages 21–30, 2017.

[6] Z. Kurtanović and W. Maalej. On user rationale in software engineering.
Requirement Engineering Journal, 23(3):357–379, Sept. 2018.

[7] W. Maalej, M. Nayebi, T. Johann, and G. Ruhe. Toward data-driven
requirements engineering. IEEE Software, 33(1), 2016.

[8] W. Martin, F. Sarro, Y. Jia, Y. Zhang, and M. Harman. A survey of app
store analysis for software engineering. TSE, 43(9):817–847, 2017.

[9] H. Munir, K. Wnuk, and P. Runeson. Open innovation in software engi-
neering: a systematic mapping study. Empirical Software Engineering,
21(2):684–723, 2016.

[10] M. Nayebi, H. Cho, and G. Ruhe. App store mining is not enough for
app improvement. Empirical Software Engineering, pages 1–31, 2018.

[11] M. Nayebi, H. Farahi, and G. Ruhe. Which version should be released
to app store? In Proc. ESEM. IEEE, 2017.

[12] M. Nayebi and G. Ruhe. Optimized functionality for super mobile apps.
In Proc. RE. IEEE, 2017.

[13] D. Pagano and W. Maalej. User feedback in the appstore: An empirical
study. In Proc. RE. IEEE, 2013.


